67 research outputs found

    Modeling Mitochondrial Bioenergetics with Integrated Volume Dynamics

    Get PDF
    Mathematical models of mitochondrial bioenergetics provide powerful analytical tools to help interpret experimental data and facilitate experimental design for elucidating the supporting biochemical and physical processes. As a next step towards constructing a complete physiologically faithful mitochondrial bioenergetics model, a mathematical model was developed targeting the cardiac mitochondrial bioenergetic based upon previous efforts, and corroborated using both transient and steady state data. The model consists of several modified rate functions of mitochondrial bioenergetics, integrated calcium dynamics and a detailed description of the K+-cycle and its effect on mitochondrial bioenergetics and matrix volume regulation. Model simulations were used to fit 42 adjustable parameters to four independent experimental data sets consisting of 32 data curves. During the model development, a certain network topology had to be in place and some assumptions about uncertain or unobserved experimental factors and conditions were explicitly constrained in order to faithfully reproduce all the data sets. These realizations are discussed, and their necessity helps contribute to the collective understanding of the mitochondrial bioenergetics

    SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models.</p> <p>Results</p> <p>This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface.</p> <p>Conclusion</p> <p>SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.</p

    Model-Based Analysis for Qualitative Data: An Application in Drosophila Germline Stem Cell Regulation.

    Get PDF
    Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses

    Analysis of Gap Gene Regulation in a 3D Organism-Scale Model of the Drosophila melanogaster Embryo

    Get PDF
    The axial bodyplan of Drosophila melanogaster is determined during a process called morphogenesis. Shortly after fertilization, maternal bicoid mRNA is translated into Bicoid (Bcd). This protein establishes a spatially graded morphogen distribution along the anterior-posterior (AP) axis of the embryo. Bcd initiates AP axis determination by triggering expression of gap genes that subsequently regulate each other's expression to form a precisely controlled spatial distribution of gene products. Reaction-diffusion models of gap gene expression on a 1D domain have previously been used to infer complex genetic regulatory network (GRN) interactions by optimizing model parameters with respect to 1D gap gene expression data. Here we construct a finite element reaction-diffusion model with a realistic 3D geometry fit to full 3D gap gene expression data. Though gap gene products exhibit dorsal-ventral asymmetries, we discover that previously inferred gap GRNs yield qualitatively correct AP distributions on the 3D domain only when DV-symmetric initial conditions are employed. Model patterning loses qualitative agreement with experimental data when we incorporate a realistic DV-asymmetric distribution of Bcd. Further, we find that geometry alone is insufficient to account for DV-asymmetries in the final gap gene distribution. Additional GRN optimization confirms that the 3D model remains sensitive to GRN parameter perturbations. Finally, we find that incorporation of 3D data in simulation and optimization does not constrain the search space or improve optimization results

    Cancer Gene Therapy Using Plasmid DNA: Pharmacokinetic Study of DNA Following Injection in Mice

    Full text link
    Overview summary The present study evaluates the pharmacokinetic half-life and tissue distribution of plasmid DNA following intravenous injection in mice. This study extends the time frame of previous in vivo analyses to 6 months following i.v. injection. Injected mice exhibit no expression of the encoded gene as assayed by immunofluorescence. This represents the first systematic in vivo pharmacokinetic study of intravenously injected DNA complexed with cationic lipids, and is relevant to many gene therapy protocols utilizing direct injection of plasmid DNA plus lipids. The results provide a preliminary basis for the safe initiation of cancer immunotherapy clinical trials in which plasmid DNA is directly injected into tumors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63149/1/hum.1995.6.5-553.pd

    SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (&lt;380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies

    Optimal chemotherapy for leukemia: a model-based strategy for individualized treatment.

    No full text
    Acute Lymphoblastic Leukemia, commonly known as ALL, is a predominant form of cancer during childhood. With the advent of modern healthcare support, the 5-year survival rate has been impressive in the recent past. However, long-term ALL survivors embattle several treatment-related medical and socio-economic complications due to excessive and inordinate chemotherapy doses received during treatment. In this work, we present a model-based approach to personalize 6-Mercaptopurine (6-MP) treatment for childhood ALL with a provision for incorporating the pharmacogenomic variations among patients. Semi-mechanistic mathematical models were developed and validated for i) 6-MP metabolism, ii) red blood cell mean corpuscular volume (MCV) dynamics, a surrogate marker for treatment efficacy, and iii) leukopenia, a major side-effect. With the constraint of getting limited data from clinics, a global sensitivity analysis based model reduction technique was employed to reduce the parameter space arising from semi-mechanistic models. The reduced, sensitive parameters were used to individualize the average patient model to a specific patient so as to minimize the model uncertainty. Models fit the data well and mimic diverse behavior observed among patients with minimum parameters. The model was validated with real patient data obtained from literature and Riley Hospital for Children in Indianapolis. Patient models were used to optimize the dose for an individual patient through nonlinear model predictive control. The implementation of our approach in clinical practice is realizable with routinely measured complete blood counts (CBC) and a few additional metabolite measurements. The proposed approach promises to achieve model-based individualized treatment to a specific patient, as opposed to a standard-dose-for-all, and to prescribe an optimal dose for a desired outcome with minimum side-effects
    • …
    corecore